Replication Protein A Prohibits Diffusion of the PCNA Sliding Clamp along Single-Stranded DNA
نویسندگان
چکیده
The replicative polymerases cannot accommodate distortions to the native DNA sequence such as modifications (lesions) to the native template bases from exposure to reactive metabolites and environmental mutagens. Consequently, DNA synthesis on an afflicted template abruptly stops upon encountering these lesions, but the replication fork progresses onward, exposing long stretches of the damaged template before eventually stalling. Such arrests may be overcome by translesion DNA synthesis (TLS) in which specialized TLS polymerases bind to the resident proliferating cell nuclear antigen (PCNA) and replicate the damaged DNA. Hence, a critical aspect of TLS is maintaining PCNA at or near a blocked primer/template (P/T) junction upon uncoupling of fork progression from DNA synthesis by the replicative polymerases. The single-stranded DNA (ssDNA) binding protein, replication protein A (RPA), coats the exposed template and might prohibit diffusion of PCNA along the single-stranded DNA adjacent to a blocked P/T junction. However, this idea had yet to be directly tested. We recently developed a unique Cy3-Cy5 Forster resonance energy transfer (FRET) pair that directly reports on the occupancy of DNA by PCNA. In this study, we utilized this FRET pair to directly and continuously monitor the retention of human PCNA at a blocked P/T junction. Results from extensive steady state and pre-steady state FRET assays indicate that RPA binds tightly to the ssDNA adjacent to a blocked P/T junction and restricts PCNA to the upstream duplex region by physically blocking diffusion of PCNA along ssDNA.
منابع مشابه
Proliferating cell nuclear antigen uses two distinct modes to move along DNA.
Proliferating cell nuclear antigen (PCNA) plays an important role in eukaryotic genomic maintenance by topologically binding DNA and recruiting replication and repair proteins. The ring-shaped protein forms a closed circle around double-stranded DNA and is able to move along the DNA in a random walk. The molecular nature of this diffusion process is poorly understood. We use single-molecule ima...
متن کاملThe mechanical properties of PCNA: implications for the loading and function of a DNA sliding clamp.
Sliding clamps are toroidal proteins that encircle DNA and act as mobile platforms for DNA replication and repair machinery. To be loaded onto DNA, the eukaryotic sliding clamp Proliferating Cell Nuclear Antigen (PCNA) must be splayed open at one of the subunit-subunit interfaces by the ATP-dependent clamp loader, Replication Factor C, whose clamp-interacting sites form a right-handed spiral. E...
متن کاملActivation of Ubiquitin-Dependent DNA Damage Bypass Is Mediated by Replication Protein A
Replicative DNA damage bypass, mediated by the ubiquitylation of the sliding clamp protein PCNA, facilitates the survival of a cell in the presence of genotoxic agents, but it can also promote genomic instability by damage-induced mutagenesis. We show here that PCNA ubiquitylation in budding yeast is activated independently of the replication-dependent S phase checkpoint but by similar conditio...
متن کاملReplication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex.
The replication clamp PCNA is loaded around DNA by replication factor C (RFC) and functions in DNA replication and repair. Regulated unloading of PCNA during the progression and termination of DNA replication may require additional factors. Here we show that a Saccharomyces cerevisiae complex required for the establishment of sister chromatid cohesion functions as an efficient unloader of PCNA....
متن کاملModeling Assemblies and Interactions at the Replication Fork: Sliding Clamps and Clamp Interacting Enzymes
DNA sliding clamps are structurally conservative toroid-shape proteins that encircle and slide along DNA, serving as scaffold for other functional enzymes to act on DNA and ensuring the replication proccessivity, thereby, of fundamental biological significance across domains of life. Mechanistic details and related functional implications concerning clamp opening, interaction between clamp and ...
متن کامل